Publications and Presentations


1.)  Kankanamge, S. R. G.; Li, K.; Fulfer, K. D.; Du, P.; Jorn, R.; Kumar, R.; Kuroda, D. G. Mechanism behind the Unusually High Conductivities of High Concentrated Sodium Ion Glyme-Based Electrolytes. J. Phys. Chem. C 2018, 122, 25237-25246.

2.)   Raguette, L.** and Jorn, R. Ion Solvation Dynamics at Solid Electrolyte Interphases: A Long Way from Bulk? J. Phys. Chem. C 2018, 122, 3219-3232.

3.)   Li, K.; Kankanamge, S. R. G.; Weldeghioghis, T. K.; Jorn, R., Kuroda, D. G.; and Kumar, R. Predicting Ion Association in Sodium Electrolytes: A Transferrable Model for Investigating Glymes. J. Phys. Chem. C 2018, 122, 4747-4756. (awarded cover)

4.)   Jorn, R. and Kumar, R. Breaking the Scales: Electrolyte Modeling in Metal-Ion Batteries. Electrochem. Soc. Interface 2017, 26, 55-59.

5.)   Wahlers, J.*; Fulfer, K. D.; Harding, D. P.; Kuroda, D. G.; Kumar, R.; and Jorn, R. Solvation Structure and Concentration in Glyme-Based Sodium Electrolytes: A Combined Spectroscopic and Computational Study. Phys. Chem. C 2016, 120, 17949-17959.

6.)   Jorn, R.; Kumar, R.; Abraham, D.; and Voth, G. A. Atomistic Modeling of the Electrode-Electrolyte Interface in Li-ion Energy Storage Systems: Electrolyte Structuring. J. Phys. Chem. C 2013, 117, 3747-3761.

7.)   Jorn, R.; Savage, J.; and Voth, G. A. Proton Conduction in Exchange Membranes Across Multiple Length Scales. Acc. Chem. Res. 2012, 45, 2002-2010.

8.)   Jorn, R. and Voth, G. A. Mesoscale Simulation of Proton Transport in Proton Exchange Membranes. J. Phys. Chem. B 2012, 116, 10476-10489. (awarded cover)

9.)   Jorn, R.; Zhao, J.; Petek, H.; and Seideman, T. Current-Driven Dynamics in Molecular Junctions: Endohedral Fullerenes. ACS Nano 2011, 5, 7858-7865.

10.)   Yoder, N.; Jorn, R.; Hersam, M. C.; and Seideman T.  Current-Driven Desorption at the Organic Molecule-Semiconductor Interface:  Cyclopentene on Si(100), published in Current-Driven Phenomena in Nanoelectronics, Seideman, T. , Ed.  World Scientific: Singapore, 2011.

11.)  Jorn, R. and Seideman, T. Implications and Applications of Current-Induced Dynamics in Molecular Junctions. Acc. Chem. Res. 2010, 43, 1186-1194.

12.)  Jorn, R. and Seideman, T. Competition Between Current-Induced Excitation and Bath-Induced Decoherence in Molecular Junctions. J. Chem. Phys. 2009, 131, 244114.

13.)  Jorn, R. and Seideman, T.  Dissipation in Molecular Junctions. J. Chem. Phys. 2008, 129, 194703.

14.)  Jorn, R.; Livshits, E.; Baer, R.; and Seideman T.  The Role of Charge Localization in Current-Driven Dynamics. Israel J. Chem. 2007, 47, 99.

15.)  Yoder, N. L.; Guisinger, N. P.; Hersam, M. C.; Jorn, R.; Kaun, C.-C.; and Seideman, T.  Saturated Hydrocarbons on Silicon:  Quantifying Desorption with Scanning Tunneling Microscopy and Quantum Theory.  Phys. Rev. Lett. 2006, 2, 0607621.

16.)  Kaun, C.-C.; Jorn, R.; and Seideman, T.  Spontaneous Oscillation of Current in Fullerene Molecular Junctions.  Phys. Rev. B 2006, 74, 045415.

17.)  Jorn, R. and Seideman, T.  Theory of Current Induced Dynamics in Molecular-Scale Devices.  J. Chem. Phys. 2006, 124, 084703.

* Indicates undergraduate researcher

** Indicates Master’s student researcher


        a.)  Talks:

1.)  Jorn, R., Chemistry & Biochemistry Seminar Series, Department of Chemistry and Biochemistry at Albright College, Reading, PA, “Chemistry with Computers:  Fighting Climate Change One CPU at a Time”, Invited. (October 18, 2018).

2.)  Jorn, R., Middle Atlantic Regional Meeting (MARM), The American Chemical Society, Hershey, PA, “From molecular electronics to energy storage: Striving for a unified approach to electron transfer in open systems”, Invited. (June 5, 2017).

3.)   Jorn, R., Chemistry Seminar, Department of Chemistry at Haverford College, Haverford, PA, “Advancing Energy Storage from iPhones to F-150’s: Computational Investigation of Solvation Structure in Metal-ion Batteries”, Invited. (October 28, 2016).

4.)  Raguette, L.* and Jorn, R., 252nd American Chemical Society National Meeting, American Chemical Society, Philadelphia, PA, “Modeling materials and charge transfer for lithium-ion batteries”, Contributed. (August 24, 2016).

5.)   Jorn, R., 252nd American Chemical Society National Meeting, American Chemical Society, Philadelphia, PA, “Electron Scattering in Liouville Space: From coherence to decoherence to incoherence?”, Contributed. (August 23, 2016).

6.)   Jorn, R., Physical Chemistry Seminar, Louisiana State University Department of Chemistry, LSU Campus, Baton Rouge, LA, “Tackling the Multi-Scale Challenges of Batteries from the Atom Up”, Invited. (September 22, 2015).

       b.)  Posters:

1.)   Raguette, L. and Jorn, R. , 253rd American Chemical Society National Meeting and Exposition, The American Chemical Society, San Francisco, CA, “Modeling material properties and charge transfer for lithium-ion batteries”, (April 4, 2017).

2.)   Raguette, L.**; Yoqunito, W.; Jorn, R., 251st American Chemical Society Meeting, American Chemical Society, San Diego, CA, “Ion Insertion Barriers in Prototypical Lithium-Ion Batteries”, (March 16, 2016).

3.) Wahlers, J.* ; Jorn, R.; Kumar, R.; Kuroda, D., 251st American Chemical Society National Meeting, American Chemical Society, San Diego, CA, “Modeling sodium battery electrolytes and electrode interfaces at varying concentration using classical molecular dynamics”, (March 16, 2016).

* Indicates Undergraduate Presenter

** Indicates Mater’s Student Presenter